Friday, August 18, 2006

MRAM - A New Technology in Que

Magnetoresistive Random Access Memory (MRAM) is a non-volatile computer memory (NVRAM) technology, which has been in development since the 1990s. Continued increases in density of existing memory technologies, notably Flash RAM and DRAM kept MRAM in a niche role in the market, but its proponents believe that the advantages are so overwhelming that MRAM will eventually become dominant.

Technology

Unlike conventional RAM chip technologies, data is not stored as electric charge or current flows, but by magnetic storage elements. The elements are formed from two ferromagnetic plates, each of which can hold a magnetic field, separated by a thin insulating layer. One of the two plates is a permanent magnet set to a particular polarity, the other's field will change to match that of an external field. A memory device is built from a grid of such "cells".

Reading is accomplished by measuring the electrical resistance of the cell. A particular cell is (typically) selected by powering an associated transistor, which switches current from a supply line through the cell to ground. Due to the magnetic tunnel effect, the electrical resistance of the cell changes due to the orientation of the fields in the two plates. By measuring the resulting current, the resistance inside any particular cell can be determined, and from this the polarity of the writable plate. Typically if the two plates have the same polarity this is considered to mean "0", while if the two plates are of opposite polarity the resistance will be higher and this means "1".

A newer technique, spin-torque-transfer, uses spin-aligned ("polarized") electrons to directly torque the domains. Specifically, if the electrons flowing into a layer have to change their spin, this will develop a torque that will be transferred to the nearby layer. This lowers the amount of current needed to write the cells, making it about the same as the read process. There are concerns that the "classic" type of MRAM cell will have difficulty at high densities due to the amount of current needed during writes, a problem STT avoids. For this reason, the STT proponents expect the technique to be used for devices of 65 nm and smaller. The downside is that, at present, STT needs to switch more current through the control transistor than conventional MRAM, requiring a larger transistor, and the need to maintain the spin coherence. Overall, however, the STT requires much less write current than conventional or toggle MRAM.

Overall

A wide research is still left out in this category before coming live to markets.

MRAM has similar speeds to SRAM, similar density but much lower power consumption than DRAM, and is much faster and suffers no degradation over time in comparison to Flash memory. It is this combination of features that some suggest make it the "universal memory", able to replace SRAM, DRAM and EEPROM and Flash. This also explains the huge amount of research being carried out into developing it.

No comments: